Year 8 Science Summary Sheets For Summer Exams 2024

How to learn:

- Find a good table or desk to study where it is quiet
- Make notes from my science booklets
- Get someone else to test me on my notes
- Do the revision work in class and go over it again at home
- Use BBC Bitesize to revise by watching the videos, reading and making notes and doing the quizzes

How not to learn:

Scan the QR code to take you to BBC Bitesize to revise your first topic

- Just reading over notes the night before is not enough to learn and understand science well
- Revising with your phone close by is not helpful as it is too easy to be distracted
- Lying on your bed or sofa is not effective as your brain thinks you are resting not working

What to revise:

- Look at all the booklets you have from science this year.
- Find the list of Learning Objectives in each booklet. These are usually in the first couple of pages of the booklet.
- Use your booklet and these summary sheets to make sure you can answer all of these
- If you are having problems ask your teacher.

In class, your teacher will help you revise and be able to advise you.

Introduction to Science Knowledge Qrganiser

A science laboratory is used for carrying out practical investigations. This can involve using hazardous chemicals and equipment such as Bunsen burners.
Some practical equipment, such as test tubes, are easily breakable so care must be taken. Thinking about the students' and teacher's health and safety is very important so that no one gets hurt.

Laboratory Safety Rules

Your teacher will have made the safety rules for the laboratory very clear. Below are some important safety rules, which should always be followed, but there may be others which you need to consider in addition to these.

- Always wear eye protection during a practical.
- Carry out a practical while standing up
- Do not eat or drink in the laboratory.
- Tie long hair back and tuck loose clothing in during practicals
- If something is spilled or broken, tell the teacher
- Ensure that the floor and work space is clear of obstacles.

Hazard Symbols

Hazard symbols show people how dangerous a chemical is, and what care should be taken when handling them

Symbols can be used all over the world and are immediately recggnisable, so it does not matter which language is used.

flammable | acute toxicity |
| :---: |
| moderate health |
| hazard | explosive

Scientific Equipment

Diagrams are used when drawing practical equipment to make it easier and quicker to draw.

beaker	Bunsen burner	tripod	evaporating basin	clamp stand, boss and clamp	conical flask
					1
test tube	funnel	measuring cylinder	thermometer	heatproof mat	gauze
1			\int	-	$\underline{x x x x x x x x x x x x x ~}$

Bunsen Burner

The Bunsen burner is an important piece of scientific equipment. It is used in many science experiments and uses methane gas.

The Safety Flame

The Roaring Flame

The safety flame is used when
the Bunsen burner is not in use.
The flame is easier to see when it is the yellow flame. To produce this flame, the air hole is fully shut. Less oxygen will get into the Bunsen burner, hence the yellow flame.

ed to heat things quickly. To produce this flame, the air hole must be fully open. More oxygen will get into the Bunsen burner, hence the blue flame.

Measurements

Units of measurement

Units are important. It is no use telling someone that it took 20 to boil some water. Do you mean 20 seconds, 20 minutes or 20 hours?

We measure length \qquad in metres (M), centimetres ((M) and millimetres ($M M$).
We measure these using a metre stick \qquad or \qquad ruler -.

We measure Mass
We measure this using a in top pan balonce kg) and grams (g).
We measure volume in litres (L_), millilitres ((\underline{l}) or metres cubed $\left(\mu^{3}\right)$ or centimentres cubed (M^{3}).
We measure this using a measuring cylinder

We measure temperature \qquad in degrees Celsius (${ }^{\circ} \mathrm{C}$).
We measure this using a therm ometer

Label each piece of equipment and say what it is used for:
top pan balance
for
weighing mass

-
-
-
-
-
-

Cells

Use the words in the box to complete the paragraph.

microscope observe	building enlarges	cells

All living organisms are made up of cells, these are the building blocks of life. To \qquad
\qquad cells in detail you need to use a microscope This \qquad the object.
enlarges

Plants and animal cells

Label the following diagrams with the words from the box.

| nucleus chloroplast | mitochondrion
 cytoplasm\quad cell wall |
| :---: | :--- | :--- | :--- |

This is an animal /-plant-cell (cross out the wrong word to make the sentence correct).

Diffusion

Substances move from an area where they are in a high concentration to an area where they are in a loW concentration, until they are evenly spread.

Label the particle diagrams above from 1 (high concentration) to 4 (evenly spread) to show the progress of particle diffusion

Biology B1
Chapter 1

Light microscopes
Label all the parts of the microscope. Using the words from the box below.

| stage | coarse focus
 fine focus | eye piece lens
 objective lens |
| :---: | :---: | :---: | :---: |

Magnification

You are asked to observe an onion cell using a microscope. The eyepiece lens has a magnification of x 10 and the objective lens has a magnification of x 50 . What is the total magnification? Show your working.

$$
10 \times 50=500
$$

Cell function

Match each component of a cell to its function.

Vacuole		Controls the cell's activities
Nucleus		Controls what comes in and out of a cell
Cell wall	\rangle	Where chemical reactions take place
Cytoplasm	-	Where respiration occurs
Chloroplasts	8	Where photosynthesis occurs
Cell membrane	,	Contains cell sap to keep the cell frim
mitochondria		Rigid structure that supports the cell

Unicellular organisms
Use the words in the box to complete the paragraph.

one	binary fission engulf	unicellular photosynthesis

Amoebas and euglenas are examples of unicellular organisms. This means that they are only made up of \qquad cell. Both organisms reproduce by \qquad Binary fission Amoebas have to \qquad engulf food to survive, but euglenas can carry out

Photosynthesis to produce their own food.

Breathing

Use the words in the box to label the diagrams.

diaphragm ribcage bronchus	alveolus muscle heart	trachea lung bronchiole	nose mouth rib

mose

Complete the table using the following words:
Up and out down and in
increases decreases down up

	Inhaling	Exhaling
Ribs move	Up \& out	Down \& in
Diaphragm moves	down	up
Chest volume	increases	decreases

The drawing shows a model used to explain how the lungs expand and fill with air. Number the sentences to put them in the correct order.
[5] ... air enters the balloon, and so
[3] ... the pressure in the jar is
(4) ... less than atmospheric pressure, and so .
[6] ... the balloon inflates.
[2] ... the stretched balloon is pulled downwards, and so
1 The air in the jar is at the same pressure as atmospheric pressure. Then

Revision Sheet - Body Systems

Biology B1 Chapter 2

Multicellular organism - levels of organisation

Use the words in the box to label the diagrams.

brain	intestines root	stem	leaf stomach	lung

On the diagram of the human body, draw the position of the heart. Label it.

Write the correct name for the level of organisation in this examples. Choose from the words:

Gas exchange

The following pie charts show the percentage of gases in inhaled and exhaled air. Colour and label the pie charts according to the following data.

Gas Name	Inhaled air	Exhaled air	Colour in
Nitrogen	78%	78%	Blue
Oxygen	20.96%	16%	Yellow
Carbon Dioxide	0.04%	4%	Red
Other gases	1%	2%	Green

What gas, present in air, is not used by the
body? Nitrogen

Skeleton

Use the words in the box to complete the paragraph.

support marrow	move protect	bones blood

Your skeleton is made of ___ bones The skeleton has four important functions - to
\qquad the body, to protect
the organs, to help the body \qquad move —— and to make blood . Red and white blood cells are produced in bone marrow

Which is found in the centre of some large bones.

Movement - Joints and muscles

Look at the drawing of the inside of an arm.
a. What are parts X and Y both types of?
muscles
b. What are the humerus, radius and ulna examples of? bones
c. Describe what happens to the shape of part X when it contracts. shortens
d. Which part, X or Y, has to contract to pull up the lower arm? Y
e. What are the names of parts X and Y ?

$$
\begin{aligned}
& \mathrm{x} \text { is triceps } \\
& \mathrm{y} \text { is biceps }
\end{aligned}
$$

f. What type of joint is the elbow? hinge g. Name a joint in the body which is a ball and socket type? Hip or shoulder

Melting and freezing

Cooling Curve for Stearic Acid

Look at the graph and answer the following questions about cooling stearic acid

Between which letters on the graph represents when stearic acid is a: Solid C-D Liquid A-B State the temperature that stearic acid melts? $70^{\circ} \mathrm{C}$

Boiling

Number the following sentences in the correct order to explain what happens when water boils.
4 After heating for some time, the temperature of the water reaches $100^{\circ} \mathrm{C}$.
5 Some water particles will have enough energy to leave the rest of the particles.
1 At room temperature, water particles can move past one another freely.
6 This means that the water turns into a gas, and is now called steam.
3 This causes the water particles to gain movement (kinetic) energy.
2 When water is heated, the water temperature begins to rise.

States of matter

Tick the correct boxes to summaries the properties of solids, liquids and gases.

Property	Solids	Liquids	Gases
Have a fixed shape	X		
Can change shape		X	X
Have a fixed volume	X	X	
Volume can change			X
Can easily be compressed			X
Cannot be easily compressed	X	X	
Can flow easily		X	X

Complete the following sentences about the states of matter.
a. Solids can be disposed of in a landfill site because they

Will remain safely in the landfill
b. Liquids can disappear from landfill sites because they can Flow through the gaps and leak out

c. The states of matter that can be poured out of a container are Liquid and gas

d. The three states of matter are

Solid, liquid and gas

Diffusion

Substances move from an area where they are in a high concentration to an area where they are in a IOW concentration, until they are evenly

Label the particle diagrams above from 1 (high concentration) to 4 (evenly spread) to show the progress of particle diffusion.

The particle model

Choose the correct bold word to make the following sentences true.

All substances are made up of tiny parts called particles/practical's. Different substances contain different particles. For example, a piece of iron contains particles of earbon/iron and a glass of millffwater contains thousands and thousands of water particles.

Particles can have certain properties/behoviour when they are all together in a substance but when they are on their own they don't have these properties. A gold ring has a yellow colour and is solid/liquid at room temperature but an individual particle of gold isn't yellow and isn't a solid. It can only have these properties when it is with other iron/gold particles.

The diagrams on the left show the particles inside a car tyre at low pressure.

Complete the second drawing to show the particles in a tyre that has been pumped up to a higher pressure.
Moving faster and colliding more often

Use the words in the box below to complete the sentences below about air pressure.

colliding more	less move particles

The particles of all gases \qquad freely in all
directions. Air pressure is caused by the moving gas particles colliding with surfaces. Inside the tyre there are less air particles, in the same volume, than outside the tyre. Air pressure inside a tyre increases if you put more _gas gas particles into the tyre. The air pressure is higher because more gas __ particles are hitting the surface.

Elements

Write down the names of 10 elements and their chemical symbols:
1 Sodium Na
2 Chlorine Cl
3 Hydrogen H
4 Nitrogen N
5 Helium He
6 Calcium Ca
7 Magnesium Mg
8 Potassium K
9 Carbon C
10 Iron Fe

Find and colour in green on the Periodic table six elements whose name begins with the letter C .

Find and colour in blue on the Periodic table six elements whose name begins with the letter S.

Write next to the following particle diagrams if they show an element (Label E) or a compound (Label C)

Activate 1
Revision Sheet - Elements, atoms and compounds
Chemistry C1 Chapter 2

The smallest part of an element that can exist is called an \qquad atom \qquad . All the atoms
of an element are the \qquad me The

atoms of one element are

\qquad to the atoms of all
other elements.

Element
Compound
Molecule
Mixture of elements
The simplest particles of matter, which we think of as being like a tiny ball.
Contains different kinds of atoms only one kubstance. Contains oumbled up but not joined together.
Conster two or more kinds of atoms the keyword with the correct description.

Compounds

When iron and sulphur are mixed and heated, as shown below, they form iron sulphide

Cross out the incorrect words to make the sentences correct.
 A compound is a substance made up of atoms of one/two or more elements. The properties of a compound are thesamedifferent to the properties of its elements. A molecule is a group of two/three or more atoms weakly/strongly joined together.

The diagrams below represent the atoms in this reaction. Complete the labels on the diagrams and colour in the diagrams making sulphur atoms yellow and iron atoms grey.

Chemical Formulae

The diagram below shows a molecules of sulphur dioxide. Each sphere represents one atom. Different coloured spheres represent different elements.
Colour the large sphere yellow for Sulfur and the small sphere red for Oxygen.

State the total number of atoms in this molecule \qquad 3

State the number of different types of atoms in the molecule \qquad
State whether sulphur dioxide is an element or a compound Compound

Complete the table below:

Name of element	Number of atoms of this element in 1 sulfur dioxide molecule
Sulfur	1
Oxygen	2

Write the formula of sulfur dioxide.

SO_{2}

Compounds are represented by the symbols of the elements joined together. Name the compounds below. How many elements are present in the compounds?

NaCl \qquad Sodium Chloride

Elements $1 \times$ Sodium, $1 \times$ Chlorine Mgo _ Magnesium Oxide
Elements $1 \times$ Magnesium, $1 \times$ Oxygen Zns _ Zinc Sulfide \qquad
Elements $1 \times$ Zinc, $1 \times$ Sulfur
AgBr __ Silver Bromide
Elements $1 \times$ Silver, $1 \times$ Bromine

Describing forces

Use the word bank to fill in the correct words in the sentence:

A force is a push or a pull
We can show the forces acting on an object using force arrows. Forces come in pairs, calledinteractionpairs. To measure forces we use a newtonmeter All forces are measured in Newtons (N).

WORD BANK

pull newtonmeter arrows interaction push newtons

Forces can change three things about an object, list them:

1. Its shape
2. Direction
3. Speed

Squashing and stretching	Use the word bank below to fill in the gaps. You may use each word once, more than once or not at all.		
WORD BANK Compress original length plastic	elastic stretch proportional	elastic limit stretched length	extension Hooke's

1. The forces on spring A will Compress it
2. The forces on spring B will stretch it.

3. Length C is the original length of the spring.
4. Length D is thestretched length of the spring
5. Length E is the __extension of the spring.
6. When the force is removed from a spring it returns to its original length. It is elastic.
The graph above right, shows how extension of a spring changes when the force on it is changed.
7. In part F of the graph the extension is proportional to the force. If the extension doubles when you double the force the spring obeys Hooke's Law.
8. In part G , the spring has been pulled past its elastic \qquad limit . It will not return to its original shape.

Forces at a distance

Write next the following forces a C for a contact force and an N for non-contact force:
$\begin{array}{lll}\text { Touching surfaces } \mathrm{C} & \text { Upthrust } \mathrm{C} & \text { Gravity } \mathrm{N} \\ \text { Magnetic forces } \mathrm{N} & \text { Friction } \mathrm{C} & \text { Air resistance } \mathrm{C}\end{array}$
Some of the statements in the table describe mass, some describe weight, and some apply to both. Tick the correct boxes in the table.

The amount of matter in an object	Mass	Weight	Both
Measured in Newtons	X		
The size of the gravity force pulling down on something		X	
Measured in kilograms		X	
This would not change if an object was taken to the Moon	X		
This would get smaller if an object was taken to the Moon		X	
Gets less when you go to the toilet			X
Increases when you eat something			X

Interaction pairs

Draw the force arrows to show the interaction pair acting on the book. Label them.

Table
The book pushes on the table. This is the force of the book on the table. What is the opposite force in the interaction pair? The force of the table on the book.

Drag forces and friction

Use the word bank to fill in the correct words in the sentence:

WORD BANK			
gas air resistance rough	friction		
liquid	water resistance	force	

The force of

> friction acts between two solid surfaces in contact with each other. The surfaces are rough \qquad and will grip each
other. This is why you need to exert a force
to make something move. There are two drag forces: air resistance and water resistance When a moving object is in contact with liquid or gaS particles it has to push them out of the way.

Draw a labelled arrow on the diagram to show where the following forces are in action:
Air Resistance (label A) Friction (label F) Water Resistance (label Wr) Weight (label W) Upthrust (U)

